Evaluation of Active and Passive Gas Imagers for Transmission Pipeline Remote Leak Detection

Thomas A. Reichardt*, Sanjay Devdas, and Thomas J. Kulp Sandia National Laboratories Livermore, CA

> Wayne Einfeld Sandia National Laboratories Albuquerque, NM

Funded by DOE/NETL FE

*P.O. Box 969, MS 9056, Livermore, CA 94551 925-294-4776, tareich@sandia.gov

Detecting transmission pipeline leaks is important

Problem:

- Low-flying aircraft are sometimes used to discern discolored vegetation caused by gas leaks.
 - → Lack of vegetation in remote areas (e.g., the desert)
- Ground-based air-sampling technique requires time

Need: Rapid method for transmission pipeline leak detection at low levels

Potential solution: Optically-based standoff-detection technologies have been developed to find gas leaks.

Technology has been demonstrated for shorter distances

Vehicle-mounted imager (refineries, gas distribution)

Technology seems adaptable to further remote applications.

Refineries, compressor stations

Remote imaging or mapping simplifies plume detection

Proposed airborne detection scenario

- Aircrafts fly at ~200 m for visual detection of discolored vegetation
- Typical flying speed is 120 mph (54 m/s)
- We will probe a 10-m side-to-side area at a 0.5-m resolution

Potential methods of remote detection

Compare performance of active and passive detection

Efforts to detect leaks in transmission pipelines remotely

- Ophir Corporation (Littleton, CO): Gas correlation radiometry with spectrally broad illumination source
- LaSen, Inc. (Las Cruces, NM): Pulsed active imager
- Gasoptics (Lund, Sweden): Gas correlation radiometry with thermal radiation
- Boreal Laser (Spruce Grove, AB., Canada): Aircraft-mounted point sensor to sample the air above a leak

There are many technical issues involved in this evaluation

Technical tasks

- Model plume behavior to calculate required detection limits
- Do we have the ability to go the distance?
 - Compare active and passive detection
 - Perform both experiments and calculations
- Examine all noise sources and all interferences (background radiation, detector and amplifier electronic noise, ambient methane absorption)
- Propose airborne detection scheme

Model plume to calculate required detection limits

- Large array of parameters
- Bracket leak conditions:
 - a) 2 leak sizes: 0.003 in² @ 400 psi and 0.010 in² @ 1000 psi
 - b) 2 soil effects: compact (clay) and loose (sand)
 - c) 2 wind speeds: 1 m/s and 10 m/s
 - d) 3 atmospheric conditions: highly unstable, neutral, and highly stable
- Compute column-integrated methane (ppm-m)
- Results compared to predicted performance

Detection limits using breadboard active system

Methane 10 ppm-m
Water 0.038 atm

- Single shot detection limit= 8 ppm-m
- 100-pt average detection limit = 0.8 ppm-m
- Averaging samples decreases noise by 1/n^{1/2}

Detection limits using breadboard passive system

- Detection system uses available focal plane array, but requires a filtered dewar
- Dewar is being manufactured by IR Laboratories
- Filters procured for differential detection of butane
- Also performing methane studies with Midac passive FTIR

Passive system detection limit depends on time of day

Sunny weather

Sunny weather

Mixed conditions

Sunny weather

Cloudy weather

- Passive system detection limit depends on the temperature difference
- Temperature difference varies considerably throughout the day
- Typical temperature difference is ~5°C.

Quantify merits of active and passive detection

 Evaluate the NECL (noise-equivalent concentration-length product), the concentration-length product that results in a signal strength equivalent to the noise

The lower the NECL, the better (detection limit is 3-5 times the NECL)

Analysis of current breadboard systems

- Active system is limited by laser energy and preamp performance at long distances
- Passive system NECL is not a strong function of range

Leak	Atmosphere	Wind speed	Soil	ppm-m
0.010 in ² @ 1000 psi	very unstable	10 m/s	compact	541
0.003 in ² @ 400 psi	neutral	10 m/s	compact	281
0.003 in ² @ 400 psi	neutral	10 m/s	loose	47
0.003 in ² @ 400 psi	very stable	1 m/s	compact	5840

Analysis of systems designed for airborne deployment

System improvements

- Increased laser repetition rate for active system (averaging)
- Tuned laser to Q-branch of methane
- Decreased spectral width of passive system (dispersive filtering scheme)

Systems would be designed for a single line-of-sight.

Instrument components: ~\$120 K

Prescribe and build remote gas detection system for transmission pipelines

- Active and passive systems with requisite performance have been designed
- Choice between two designs waiting on final passive measurements
- ~1 year: Performance requirements for long-range airborne testing will be demonstrated
- ~2 years: System will be ruggedized sufficiently for airborne deployment and an airborne test will be performed

- Side cargo doors can be removed
- Bottom viewing port
- 3-wk field test with 20 hrs of flight time:
 \$25K for aircraft use

Examples of gas-imaging systems engineered at Sandia

Rough specs for airborne system:

Size: 0.5 m³

Weight: 40 kg

Power consumption: 500 W